Белки

[1] [2]

В конце 40-х — начале 50-х годов нашего века химикам удалось обстоятельно проанализировать с помощью метода бумажной хроматографии смеси аминокислот, полученные при расщеплении ряда белков. В результате удалось установить общее число остатков каждой аминокислоты, содержащихся в молекуле белка, однако порядок расположения аминокислот в полипептидной цепи при этом определить, естественно, было нельзя. Английский химик Фредерик Сенгер (род. в 1918 г.) изучал инсулин — белковый гормон, состоящий примерно из пятидесяти аминокислот, распределенных между двумя взаимосвязанными полипептидными цепями. Сенгер расщепил молекулу на несколько более коротких цепей и проанализировал каждую из них методом бумажной хроматографии. Восемь лет продолжалась кропотливая работа по «складыванию мозаики», но к 1953 г. был установлен точный порядок расположения аминокислот в молекуле инсулина. Позднее таким же способом было установлено детальное строение даже больших молекул белка [95].

Следующий шаг состоял в том, чтобы подкрепить этот труд реальным синтезом заданной молекулы белка. В 1954 г. американец Винсент Дю-Виньо (1901—1978) положил начало такому синтезу. Он получил окситоцин — пептид, состоящий всего лишь из восьми аминокислотных остатков. Однако с более сложными молекулами дело пошло быстрее, и вскоре были синтезированы цепи, содержащие несколько десятков аминокислот. К 1963 г. в лабораторных условиях были получены полипептидные цепи инсулина.

Однако, зная только порядок расположения аминокислот, нельзя еще представить себе совершенно отчетливо все уровни организации белковой молекулы. Даже при осторожном нагревании белки нередко необратимо утрачивают свойства, присущие им в природном состоянии, иными словами, происходит денатурация белков. Причем обычно денатурация не сопровождается расщеплением полипептидной цепи; чтобы расщепить цепь, нужны более жесткие условия. Следовательно, цепи образуют какую-то определенную структуру под действием слабых «вторичных связей». В образовании таких вторичных связей обычно участвует атом водорода, находящийся между атомами азота и кислорода. Такая водородная связь в двадцать раз слабее обычной валентной связи.

В начале 50-х годов американский химик Лайнус Полинг (род. в 1901 г.) предположил, что полипептидная цепь свернута в спираль (подобна «винтовой лестнице») и удерживается в этом положении водородными связями. Эта идея оказалась особенно плодотворной применительно к относительно простым фибриллярным белкам , из которых состоят покровные и соединительные ткани.

Более того, спирали образуют даже более сложные по структуре глобулярные белки . Английские химики Макс Фердинанд Перутц (уроженец Австрии) (род. в 1914 г.) и Джон Коудери Кендрю (род. в 1917 г.) обнаружили это при детальном исследовании строения гемоглобина и миоглобина (белков крови и мышц соответственно, способных обратимо присоединять кислород). В своей работе они использовали новый метод анализа — метод дифракции рентгеновских лучей : пучок рентгеновских лучей, проходящий через кристаллы, рассеивается атомами, образующими кристаллы. Рассеивание в заданном направлении и при заданном угле наиболее эффективно в том случае, когда атомы располагаются последовательно. Определяя величину отклонения, можно выявить расположение атомов внутри молекулы. Исследовать таким образом большие молекулы сложной структуры, подобные белковой молекуле,— задача весьма трудоемкая, и тем не менее к 1960 г. таким образом удалось уточнить последние детали строения молекулы миоглобина (состоящей из двенадцати тысяч атомов).

Полинг считал, что предложенную им спиральную модель молекулы можно распространить и на нуклеиновые кислоты. В начале 50-х годов английский физик Морис Хью Фредерик Уилкинс (род. в 1916 г.) изучал нуклеиновые кислоты методом дифракции рентгеновских лучей, и результаты его работы можно было использовать для проверки справедливости предположения Полинга. Английский физик Фрэнсис Гарри Комптон Крик (род. в 1916 г.) и американский химик Джеймс Дьюи Уотсон (род. в 1928 г.) установили, что удовлетворительно объяснить результаты дифракционных исследований можно, лишь несколько усложнив модель молекулы. Каждая молекула нуклеиновой кислоты должна представлять собой двойную спираль, образованную навитыми вокруг общей оси цепями. Эта модель Уотсона — Крика, предложенная ими впервые в 1953 г., сыграла важную роль в развитии генетики [96][97]. [91] См.: Шамин А. И. История химии белка.— М.: Наука, 1977, 349 с. [92] В 1833 г. Грэхем изучал различные формы фосфорной кислоты и показал, что в некоторых из них на металл можно заместить более одного атома водорода. В результате химики узнали о существовании многоосновных кислот. [93] Основные труды Э. Фишера и его биографический очерк можно прочитать в кн.: Э. Фишер. Избранные труды.— М.: Наука, 1979, 639 с. Характерно, что Э. Фишер не только создал представление о типе строения белковых молекул, но и высказал важное положение о том, что белковые молекулы могут обладать одновременно и химической и биологической индивидуальностью благодаря способности образовывать бесчисленное множество изомеров. Это положение — одно из фундаментальных представлений молекулярной биологии. Удивительно, что химик оценил его значение по меньшей мере на два десятилетия раньше, чем это сделали биологи. [94] О М. С. Цвете и его роли в создании хроматографии имеется обширная литература. Наиболее полно она представлена в библиографии к кн.: Сенченкова Е. М. Михаил Семенович Цвет. 1872—1919.— М.: Наука, 307 с. [95] За исследования строения индивидуальных белков Ф. Сенгеру в 1958 г. была присуждена Нобелевская премия. Однако после этого он переключился на разработку методов определения строения индивидуальных нуклеиновых кислот. Фактически это были поиски путей к определению строения генов-носителей наследственной информации в организмах живых существ. В конце 70-х годов эти работы увенчались успехом, в 1980 г. Ф. Сенгеру была вновь присуждена Нобелевская премия по химии — беспрецедентный случай в истории химии. До него Нобелевскую премию дважды получала М. Кюри, но один раз по химии, а второй раз по физике. Двумя Нобелевскими премиями по физике был отмечен Д. Бардин, и две Нобелевские премии получил Л. Полинг, но одну по химии, а другую за деятельность в защиту мира. [96] Увлекательную историю создания модели дезоксирибонуклеиновой кислоты описал Д. Уотсон в ставшей знаменитой книге «Двойная спираль. Воспоминания об открытии структуры ДНК» (М.: Мир, 1969, 152 с). Но изложение истории этих направлений будет неполным, если не упомянуть о том, что изучение биополимеров — белков и нуклеиновых кислот, а также низкомолекулярных физиологически активных соединений — привело к формированию нескольких направлений в области взаимодействия химии и биологии. Классическая биохимия дополнилась молекулярной биологией, молекулярной генетикой, возникла биоорганическая химия. Сейчас этот процесс привел к формированию нового направления в науке — физико-химической биологии. Эти события вызвали революционные преобразования современной биологии. А. Азимов включает эти направления в сферу истории биологии, но сейчас уже невозможно отрывать их от химии. К сожалению, изложение их истории в данном издании достаточно полно сделать невозможно, да и история их только начинает разрабатываться. См.: Olby R. The Path to the Double Helix. Seattle, Univ. Washington Press, 1975. 510 p. [97] Читатель, интересующийся более подробно этим предметом, может обратиться к моей книге «Генетический код» (Orion Press, 1963).
[1] [2]



Добавить комментарий

  • Обязательные поля обозначены *.

If you have trouble reading the code, click on the code itself to generate a new random code.